
Dynamic labyrinthine pattern in an active liquid film

Yong-Jun Chen,1 Yuko Nagamine,2 and Kenichi Yoshikawa1,2,*
1Department of Physics, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

2Spatio-Temporal Order Project, ICORP, Japan Science and Technology Agency (JST), Kyoto 606-8502, Japan
�Received 19 August 2009; published 24 November 2009�

We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine
pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear
time-dependent change with regard to both perimeter and area of a domain. An autocorrelation analysis of time
development of the dynamics of the perimeter and area revealed a strong geometric correlation between
neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is
strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dy-
namic pattern are reproduced by a diffusion-controlled geometric model.
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I. INTRODUCTION

Pattern formation is ubiquitous in nature. Labyrinthine
pattern formation is found in a variety of chemophysical sys-
tems, such as reaction-diffusion systems, a thin magnetic
film, an amphiphilic Langmuir monolayer, type I supercon-
ductors in a magnetic field, a droplet of ferrofluid in a mag-
netic field and Hele-Shaw flow �1–3�. Generally, labyrinthine
pattern formation arises due to competition between two an-
tagonistic interactions �2�, which have been interpreted theo-
retically in the framework of reaction-diffusion equations
�4�. The system tries to achieve a minimum energy and sta-
tionary pattern corresponds to the state at the minimum en-
ergy �3�. The labyrinthine pattern formed in the aforemen-
tioned systems maintains its morphology as the pattern
evolves. The final pattern depends on the initial perturbation.
However, to our best knowledge, a persistently dynamic
labyrinthine pattern in a liquid film is not reported. In this
paper, we report spontaneous dynamic labyrinthine patterns
in inertial liquid-liquid dewetting.

When a liquid film is deposited on a nonwettable sub-
strate, the liquid will dewet and leave a dry patch. Dewetting
has been studied intensively because of its technological im-
portance �5�. A hole forms and grows, and the liquid nucle-
ates as dewetting proceeds. For a thin film �submicrometer
thickness�, viscosity and intermolecular interaction dominate
the dewetting process �6�. When a film has a relatively large
thickness h �millimeter scale�, an inertial effect is present not
only in wetting �7� but also dewetting �8,9�. Gravity creates
static pressure and tends to flatten the liquid on the substrate.
The driving force for dewetting is a negative spreading co-
efficient �8�. If the thickness h is below a critical thickness
hc, a liquid film with a relatively large thickness �millimeter
scale� will spontaneously dewet when a hole larger than
some critical size is formed in the film �8,9�. In an inactive
system of inertial liquid-liquid dewetting, a hole maintains
its shape during growth on a uniform substrate �5�. A capil-
lary wave and gravity wave have been found to be charac-
teristics of the inertial effect. The front of the hole grows
constantly while obeying Culick law for the bursting of a

soap film �9�. After the film reaches its critical thickness hc,
the dewetting process stops. The liquid film takes partial wet-
ting on the substrate. However, in an active system as that of
the present paper, the system agitates in a spontaneous man-
ner �10,11�. Chemical nonequilibricity causes persistently
dynamic motion of contact line. Here, we describe complex
dynamic labyrinthine patterns formed through an active dew-
etting process in an alcohol/water system.

II. EXPERIMENT

We used pentanol �Wako, Japan, density: �o
=0.810 g /ml, organic: o� and pure water �w� in the experi-
ment. Pentanol is partially miscible with water �Concentra-
tion c�2.7 vol % at 20 °C�. A circular glass Petri dish was
filled to a depth of several centimeters with pure water and
this was covered by a thin film of pentanol �millimeter thick-
ness�. The thickness of pentanol film is less than the critical
thickness for dewetting. We found that the critical thickness
hc of a pentanol film on pure water �contaminated by pen-
tanol� is about 1.60 mm. A hole larger than a critical size was
created by blowing on the air-organic interface using a pi-
pette. To control the thickness of the pentanol film, we with-
drew pentanol from the film using a glass syringe. We per-
formed experiments using different sizes of Petri dishes with
diameters in the range of 10–20 cm. The system was illumi-
nated by an optical-fiber lamp and the evolution of the con-
tact line was projected onto tracing paper. The map of the
contact line on the tracing paper was monitored by a video
camera. The experimental setup and a typical pattern are
shown in Fig. 1. The phenomenon was analyzed using
image-analysis software.

III. RESULTS

Figure 2 exemplifies the growth of a hole when a hole is
created in a thin film with a thickness smaller than the criti-
cal thickness for dewetting. In the early stage �inset in Fig.
2�, the radius of the hole grows at a constant velocity of 2.14
cm/s, which obeys Culick law �9�. However, after the hole
reaches its maximum radius, the contact line does not stop,
but rather returns toward the air-water interface. The hole
shrinks and instability of the contact line grows. The contact*Corresponding author; yoshikaw@scphys.kyoto-u.ac.jp
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line then develops complex patterns, as shown in Fig. 2.
Based on a measurement of geometric parameters �perimeter
and area of the hole� �Fig. 2�, we found that the hole exhibits
oscillating behavior. The behavior of the contact line is
markedly different from that of a water film dewetting from
the hydrophobic liquid perfluorodecalin �9�. After the hole
grows, the dynamic labyrinthine pattern exists for a long
time �on the order of hours�. The morphology of pattern
changes continuously �movie 2 �12��. Figure 3 shows typical
dynamic patterns formed by the contact line. The contact line
forms an interesting labyrinth, where the labyrinthine pattern
changes dynamically with time. The dynamics of the patterns
is rather different from those of stationary patterns in sys-
tems mentioned previously �2�. Figure 4 shows the dynamics
of a single-domain pattern. The perimeter of the pattern
changes with time. As the pattern evolves, it moves within
the Petri dish. The trajectory of the center of mass is shown
in Fig. 4�a�. In the experiment, we found that the pattern
tends to move by backing on the wall of the Petri dish. The
velocity of the center of mass is on the order of centimeters
per second. The perimeter and area of the domain are plotted
in Fig. 4�b�. The dynamics of the patterns are continuous.
The evolution of the pattern exhibits periodic behavior be-
cause of interaction with the wall of the Petri dish. The sys-
tem is far from equilibrium. The contact line moves continu-
ously. We found that contact lines repulse each other. When
two contact lines approach each other, damping interaction
exists between them. Two contact lines do not fuse into each
other unless they move toward each other at large velocity.
The distance between two nearest stable contact lines is
about 1 mm. This is similar to the case of interacting chemi-
cal fronts in the chemical reaction-diffusion system de-
scribed by Lee et al. �1�. Thus, a contact line can evolve into
a complex labyrinthine structure. The pattern can be repli-
cated by splitting of a domain, and two domains can coa-
lesce. Such coalescence of contact lines creates new domains
and islands within a domain.

IV. DISCUSSION

As a pattern evolves, the contact line does not maintain its
morphology, unlike the formation of a steady pattern �1–3�.
Patterns with various morphologies were found, such as long
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FIG. 2. �Color online� Growth of a hole. The upper images are a
series of snapshots of the growth of the hole. The lower panels are
plots of the area and perimeter of the hole against time. The inset is
plots of the area and perimeter at an early stage of hole growth. The
lines are fitted to the data. The initial thickness of the film is 1.40
mm. The diameter of the Petri dish is 18.0 cm. Scale bar is 3 cm.
For details, see movie 1 �10�.
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FIG. 3. Dynamic labyrinthine patterns. After the initial growth
of a hole, a dynamic labyrinthine pattern emerges. In this figure, we
show a typical example. The initial thickness of the film is about
1.50 mm. The diameter of the Petri dish is 18.0 cm. Scale bar is 3
cm.
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FIG. 1. �Color online� Schematic of the experimental setup. A
Petri dish is filled with a layer of pure water, which is covered by a
thin liquid film of pentanol before �up� and after �down� a hole is
created in the pentanol film. At the right side, a typical pattern is
shown. Scale bar is 2cm. The inset is drawing of contact area of air,
pentanol, and water. The surface tensions ��a/o, �o/w, and �a/w� and
the effective tension from gravity ��g� are indicated by arrows.
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fingered, labyrinthine, and branching structures. As shown in
Fig. 4�b�, perimeter and area of the pattern change con-
stantly. During pattern evolution, pattern dynamics shows
periodic behavior, as in Fig. 4�b�. We examine the time cor-
relation of patterns. The autocorrelation function of patterns
can be written as

C�T� =
��G�t� − Ḡ��G�t + T� − Ḡ��

�2

where � � represents a mean value, G represents a geometric

parameter of a pattern �perimeter or area�, Ḡ is the mean

value of the perimeter or area, �2= ��G�t�− Ḡ�2� is the vari-
ance of the geometric parameters, t is time and T is the time
lag. The autocorrelation functions of the perimeter and area
in Fig. 4�b� are plotted in Fig. 4�c�. The autocorrelation
shows that neighboring patterns are stongly correlated with

each other. Pattern evolution is predictable and not random.
A negative correlation suggests oscillation of the perimeter
and area �13�. The autocorrelation function reflects the peri-
odic evolution of patterns in Fig. 4�b�. This is consistent with
the Fourier transformation of the time traces of the perimeter
and area in Fig. 4�d�. Several peeks are noted in Fig. 4�d�,
indicating the frequencies of oscillation. This oscillation of
the perimeter and area reflects the periodic evolution of the
energy of the system. The periodic shape of the autocorrela-
tion function in Fig. 4�c� suggests that the patterns show
autoregressive behavior of patterns evolution �13�. This pe-
riodic time evolution of geometric parameters should be re-
lated to the interaction with the no-flux wall, the inertial
effect and the change in the surface tension of the air-water
interface. As shown in Fig. 2, when a hole reaches its maxi-
mum radius due to dewetting, the direction of the driving
force, which governs the motion of the contact line, changes.
This change in the direction of the driving force leads to a
dewetting-wetting transition.

The initial thickness of the film is important in dynamic
pattern formation. The effective tension in a film is defined
as �ef f =�a/o+�o/w−�g, the value �g= 1

2 �̃gh2 is the tension
due to the static pressure of gravity �5�, where �̃=�o�1
−�o /�w�, �w, g, and h are the effective density, density of
water, acceleration due to gravity and thickness of the film,
respectively, and the subscripts a, o, and w represent air,
organic phase �pentanol� and aqueous phase, respectively.
The effective tension �ef f =�a/o+�o/w−�g tends to induce
dewetting while the surface tension of the air-water interface
�a/w tends to make the film thin �Fig. 1�. The critical initial
thickness for the dewetting of pentanol from water can be
determined by the equation �ef f =�a/w. Therefore, the critical
initial thickness for dewetting is

hc = ���a/o + �o/w − �a/w�/�1/2�̃g� = �− S/�1/2�̃g�

where the spreading coefficient S=�a/w−�o/w−�a/o. Our ex-
periment showed that the critical initial thickness for the
growth of a hole is about 1.60 mm. Thus, we obtain a spread-
ing coefficient of S=−1.92 mN /m with the above relation-
ship. However, if the velocity of dewetting at an early stage
in Fig. 2 agrees with Culick law V=��S��1−h2 /hc

2� /2K�oh
�inertial effect is not included� �V=2.14 cm /s�, where V is
velocity and K=2.0 because the velocity is small and within
the quasistatic regime �9�, we can estimate the critical initial
thickness hc�=2.10 mm and thus obtain a spreading coeffi-
cient of S�=−3.31 mN /m �using the above expression for
critical thickness�. The pseudoerror of the estimation based
on Culick law indicates that the inertial effect contributes to
the spreading coefficient. The contribution of the inertial ef-
fect arises from the static pressure of gravity �S=S−S�
=1 /2�̃g�hc

2−h2�=1.50 mN /m �h=1.40 mm in Fig. 2�. We
estimate the interfacial tension at the organic-water interface
�o/w according to Ref. �14� using the ratio of the adhesion
and cohesion of pentanol. A theoretical estimation gives 4.12
mN/m for the surface tension at the pentanol-water interface
�o/w �for pure water, �a/w=72.80 mN /m and �a/o
=25.80 mN /m at 20 °C �14��. Consequently, the surface
tension in the air-water interface �contaminated� that is
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FIG. 4. �Color online� Dynamics of a single-domain pattern.
The initial thickness of the film is 1.50 mm. The diameter of the
Petri dish is about 11.0 cm. �a� A pattern and superimposed trajec-
tory of the center of mass of the patterns. �b� Plot of the perimeter
and area of the patterns against time. �c� Autocorrelation function
C�T� of the perimeter (C�T�-P) and area (C�T�-A). �d� Fourier trans-
formation of time traces of the perimeter and area in �b� �FTP for
perimeter and FTA for area�. For details, see movie 3 �10�.
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freshly exposed to air is 28.00 mN/m with S=�a/w−�o/w
−�a/o. Upon exposure to air, the surface tension in the air-
water interface is determined by diffusion, dissolution and
volatilization. The surface tension of air-water interface de-
pends on the area of the air-water interface that is exposed to
air. The area of the air-water interface depends on the total
volume of pentanol, since the dewetting process tends to
minimize the free energy of the system. In the experiment,
we found that a pattern with a very large domain tends to
split. Thus, multiple domains coexist when the initial film is
thin. Islands of pentanol are found in a domain during evo-
lution of the domain when the initial film is thin. The size of
the dish also affects the pattern morphology. In a small Petri
dish, only one domain usually forms when the initial thick-
ness is large, while multiple domains coexist in a large Petri
dish. The pattern from a thicker initial film is usually simpler
than that from a thinner initial film.

To observe the actual behavior of pentanol on pure water,
we place a droplet of pentanol on pure water. The droplet
spreads completely and disappears. Apparently, pentanol
completely wets the surface of pure water. However, when
we place a droplet of pentanol on the surface of aqueous
solution with 2.3 vol% pentanol, the droplet does not disap-
pear soon, but moves spontaneously as reported previously
�10�. The surface tension of the air-water interface is de-
creased by the dissolving of pentanol in pure water. In the
experiment, we found a broad class of substances that exihbit
similar behavior, including nitrobenzene, aniline, chloroben-
zene and pentanol �11,15�. Pseudo partial wetting of these
substances on an air-water interface was found �11�. A mono-
molecular layer spreads from a droplet on an aqueous solu-
tion to the air-water interface. The molecules dissolve and
volatilize from the air-water interface. This spreading pro-
cess changes the surface tension of the air-water interface.
Marangoni-driven spreading induces the self-propelled mo-
tion of a droplet on an aqueous solution �11�. Since the water
surface has a large surface tension, it is surprising that a
pentanol film dewets from the surface of pure water �see Fig.
2�. The driving force for wetting and dewetting is the spread-
ing coefficient �5�. For pentanol on pure water, the spreading
coefficient S=�a/w−�a/o−�o/w=40 mN /m�0 ��a/w
=72.8 mN /m for pure water�. The dewetting of pentanol
from the water surface indicates that the surface tension of
the water surface, which is exposed to air after dewetting, is
less than that of pure water as mentioned earlier. The surface
tension of the contaminated water surface is close to that of a
saturated aqueous solution. However, when the area of the
hole is large enough, the surface tension will recover to that
of pure water through the dissolution and vaporization of
molecules. We observed a dewetting-wetting transition of
film under the assistance of an inertial effect.

The morphology of the patterns formed in our system is
similar to that of the viscous fingering patterns in a Hele-
Shaw cell �16�. Figure 5 shows the evolution of fingers in a
pentanol film. The growth of fingering patterns is similar to
that in Saffman-Taylor instability �16�. A small instability
evolves into fingers. However, in the last stage of the finger-
ing growth in Fig. 5, the fingers are smoothed out due to the
flow in the pentanol film. The fingers cannot grow continu-
ously because there is no external pressure and the patterns

are confined to the film. The flow and pressure in the film
due to gravity couple the motion of different parts of the
contact line. The nature of this coupling is unclear. Our sys-
tem is an open space without external pressure, while a Hele-
Shaw cell is a closed space. The thickness of our pentanol
film is not constant. A gradient of thickness in the film will
induce fluid flow in the pentanol film. Thus, the mechanism
of our dynamic pattern formation is different from that of the
Saffman-Taylor fingering pattern. The competition between
the effective tension in the film and the surface tension in the
air-water interface controls the morphology of the pattern.
The continuous dissolution and volatilization at the air-water
interface cause the dynamic evolution of patterns. The mo-
tion of the contact line depends on the concentration of pen-
tanol in the vicinity of the contact line. The chemical non-
equilibricity near the contact line at the air-water interface
disturbs the dynamic motion of the contact line. The dynamic
phenomenon observed in the experiment is due to chemical
nonequilibricity in the air-water interface.

To obtain insight into the physics of dynamic pattern for-
mation, we consider the fluid field in the pentanol film and
the concentration field of pentanol in air-water interface. In
the pentanol film, we use Darcy law to describe the motion
of the fluid �Reynolds number is less than ten�. The velocity
field of a fluid in a liquid film is proportional to the gradient
of pressure in the fluid �16�, i.e., Darcy law: v� =− e2

12� � P,
where � is the fluid viscosity in an organic film. With the
continuity condition �h

�t +� ·�v� =0, we obtain �h
�t = h2

12���2P,
where P= P0+ 1

2�gh2−�a/oCs, Cs is the curvature of the air-
organic interface and P0 is the pressure in air. Thus, we ob-
tain an equation for the evolution of the thickness of the film,

�h

�t
=

h3

12�
�g�2h +

h2

12�
�g � h · �h −

�h2

12�
�a/o�

2Cs. �1�

On the other hand, the density of alcohol molecules in the
air-water interface 	 can be characterized by a diffusion
equation �17�,

�	

�t
= D�2	 − j�t,x,y� �2�

where D and j�t ,x ,y� are a diffusion coefficient and the net
molecular flow of vaporization and dissolution from the air-
water interface, respectively. The evolution of the two phases
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FIG. 5. Snapshots of the evolution of fingering patterns. The
initial thickness of the film is 1.50 mm. The diameter of the Petri
dish is 11.0 cm. Scale bar is 2 cm. For detail, see movie 4 �10�.
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of the pentanol film and the air-water interface is coupled
through the contact line. It is a challenge to solve this free
boundary problem, not only analytically but also numeri-
cally. However, Eqs. �1� and �2� suggest that the motion of
the boundary between the pentanol film and the air-water
interface is determined by the diffusion process in the two
areas. The driving force for motion of the contact line is
related to how pentanol diffuses away and how pentanol
fluid flows in and out at the vicinity of the contact line. We
can make an analogy to the front motion of solidification in
crystal growth �18�. In solidification, the temperature field is
governed by the diffusion of heat �18�. In the vicinity of the
front, diffusion of heat is related to the curvature of the in-
terface between the solid and liquid. Pattern formation in
solidification can be described using a boundary-layer model
with diffusion-controlled evolution �19,20�.

If we consider the evolution of a single-domain pattern
for simplicity, the equation that governs the motion of the
contact line is

d

dt

�L

�r�̇�s�
−

�L

�r��s�
= −

�R

�r�̇�s�
�3�

and the Lagrangian L can be expressed as L=	0
s0ds
 1

2 �r�̇�2�l
−E�r��s���, where we parameterize the closed boundary of the
pattern as s� �0,s0�, with generalized coordinates r��s� and
velocity r�̇�s�, and s, s0=s0�t�, �l and E�r��s�� are the arc
length of the contact line, the total arc length, the density of
contact line and the potential experienced by the contact line,
respectively. In the Lagrangian L, we include the inertial
effect of motion of the contact line. The energy dissipation
due to viscosity is expressed by the Rayleigh function �21�
R= 


2	0
s0ds�r�̇�2, where 
 is a friction coefficient. From Eq. �3�,

we obtain

�l
dU

dt
= − 
U − n̂ · �E �4�

where U=r�̇ · n̂ and n̂ is a normal unit vector on the contact
line. The force −n̂ ·�E is determined by the concentration
field in the air-water interface and the thickness field in the
film. The force that acts on the contact line is orthogonal to
the tangential vector of the contact line. The general kinetic
dynamics of a curve can be described using equation �22�

�̇ = − ��2 +
�2

�s2U �5�

where � is the curvature of the contact line. The perimeter
and area of contact line are not conserved. To solve Eqs. �4�
and �5�, we must specify −n̂ ·�E.

The surface concentration of pentanol in the air-water in-
terface is controlled by a spreading process. The spreading
rate of pentanol at the air-water interface is determined by
the diffusion of pentanol at the air-water interface. As shown
by a previous calculation �10�, diffusion depends on the
shape of boundary. The gradient of concentration is propor-
tional to the curvature of contact line �10�. This is similar to
the diffusion-controlled solidification and melting in crystal
growth �18,20�. The motion of the interface is driven by its

curvature. Thus, we can write the driving force due to
curvature-governed diffusion acting on the contact line as
�18�

− n̂ · �E = �� + b�A0 − A� �6�

where � is an adjustable constant. Interaction with the no-
flux boundary of the Petri dish conserves the volume of the
pentanol film. Global feedback adjusts curvature-driven evo-
lution and causes periodic oscillation of the pattern. The ef-
fect of the no-flux boundary and the effect of gravity, which
depends on the thickness of the film, can be modeled as
b�A0−A�t�� in Eq. �6�, where b, A0, and A are a coupling
constant, equilibrium area and instantaneous area of the do-
main. For a closed curve, the dynamics of the area can be
written as �A

�t =�ldsU, where l is a closed curve �22�. In ad-
dition, a nonequilibrium spreading process disturbs the mo-
tion of the contact line. The external disturbance is one of the
reasons for the dynamic behavior of the pattern. For simplic-
ity, we only consider the inertial effect in our calculation.

By substituting Eq. �6� into Eq. �4�, we have �by setting
�=1.0�

� = �lU̇ + 
U − b�A0 − A� . �7�

Using Eq. �5�, we obtain

�lÜ + 
U̇ + b�
l

dsU = − ��lU̇ + 
U − b�A0 − A��2U −
�2U

�s2 .

�8�

In addition, we set U�s� �t=0=0 and the initial condition of the
contact line

x����t=0 = cos ��R0 + � cos�f���

y����t=0 = sin ��R0 + � cos�f���

where x and y are orthogonal coordinates as shown in Fig. 6
and �� �0,2��, R0=2.0, �=0.1, and f =9.0 are the angle in
polar coordinates, the initial radius, the intensity of the dis-
turbance and the frequency of the disturbance of the circle.
Figure 6 shows the numerical results of Eqs. �7� and �8�.
With a small initial disturbance, curvature drives the evolu-
tion of the contact line. An inertial effect that arises from
motion of the contact line causes pattern dynamics. The mor-
phology of the domain changes during evolution. In the nu-
merical simulation, we consider the coalescence of contact
lines and repulsive interaction between two contact lines
�they are not modeled in the mathematic model�. The pattern
will split during evolution, as shown in Fig. 6, and the small
part is omitted in the result. Thus, there is a shift in the area
and perimeter when a domain splits. Figure 7 shows the evo-
lution of the curvature of the boundary. The Long- and short-
term evolution of curvature clearly indicate dynamic behav-
ior of the pattern �Figs. 7�a� and 7�b��. Comparing with the
evolution of a front of solidification, the inertial effect causes
a dynamic evolution of morphology �18�. Figure 8�a� shows
the perimeter and area of the domain. Periodic behavior is
noted due to interaction from the no-flux wall and conserva-
tion of the volume of the pentanol film. In the actual motion

DYNAMIC LABYRINTHINE PATTERN IN AN ACTIVE… PHYSICAL REVIEW E 80, 056310 �2009�

056310-5



of the contact line, the effect of no-flux boundary of the Petri
dish is complex and not uniform along the contact line. In-
teraction with the no-flux boundary induces oscillation of the
pattern near a certain equilibrium position. However, we
found that the coupling constant b is the dominant factor
for the period of oscillation in the numerical simulation, as
shown in Fig. 8�b�. The oscillation of area strongly depends
on the coupling constant b, but not linearly. The perimeter
of domain boundary also shows certain periodic behavior
depending on the coupling interaction. The numerical results
qualitatively reproduce the dynamic behavior of the pattern.
However, the curvature-driven growth of the pattern is com-
plex. The specification of force −n̂ ·�E as a function of cur-
vature in Eq. �4� has an important effect on the morphology
of the pattern �22�. Disturbance from nonequilibricity is not
included in our simulation. As shown previously, the nature
of disturbance determines the dynamic behavior of pattern
evolution in a neural system �23�. It would be interesting to
include more information in the model and this would be
worthy of further study.

V. CONCLUSION

In summary, we have demonstrated a dynamic labyrin-
thine pattern in an active liquid system of pentanol/water.
The patterns show oscillating behavior and autoregressive
behavior. The motion of contact line is controlled by diffu-

sion process. The pentanol/water system is an active system
that demonstrates self-agitation. The experiment showed that
self-agitation caused by the chemical nonequilibricity of sur-
face tension in the vicinity of the contact line plays an im-
portant role in dynamic behavior. A curvature-governed the-
oretical model has been proposed. The effects from the
boundary of Petri dish and the inertial effect of motion are
considered, which cause dynamic evolution of the morphol-
ogy of patterns. Our theoretical model reproduces the essen-
tial aspects of dynamic patterns. However, dissolution and
volatilization at the air-water interface as continuous distur-
bances change the surface density of molecules dynamically
and have important effect on the dynamic behavior of pat-
terns. The effect of external disturbance on the pattern evo-
lution is the future project. The importance of external dis-
turbance in the dynamic pattern formation has been noted in
a theoretical model of neural population �23�. It is the center
of interest to understand dynamic pattern generation in be-
havior and neural systems �24,25�. Our results may contrib-
ute to the understanding of dynamic patterns in biological
systems.
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